Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
EXC501	Digital Communication	3 - 0 - 0	03	3 - 0 - 0	03	PC
EXC502	Digital VLSI Design	3 - 0 - 0	03	3 - 0 - 0	03	PC
EXC503	Discrete Time Signal Processing	3-0-0	03	3-0-0	03	PC
EXC504	Random Signal Analysis	3 - 0 - 0	03	3 - 0 - 0	03	PC
EXDLC505 Department Level Elective Course - I		3-0-0	03	3-0-0	03	DLE
EXL501 Digital Communication Laboratory		0 - 2 - 0	02	0 - 1 - 0	01	PC
EXL502	Digital VLSI Design Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
EXL503	Discrete Time Signal Processing Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
EXDLL505	Department Level Elective Course Laboratory- I	0 - 2 - 0	02	0 - 1 - 0	01	DLE
EXL506	Business Communication & Ethics Laboratory	$0 - 4^{**} - 0$	04	0 - 2 - 0	02	BS
EXPR53	Project Based Learning – Minor Project Lab - I	0 - 2 - 0	02	0 - 1 - 0	01	PBL
EXXS57	Skill Based Learning -VII	0-2*-0	02	0 - 1 - 0	01	SAT
EXXT58	Technology Based Learning - VIII	0-2*-0	02	0 - 1 - 0	01	SAT
	Total	15-18-00	33	15 - 09 - 00	24	

Program Structure for Third Year UG Technology (EX) Semester-V - Credit Scheme

	Course Code	Course Title and Group
Department Level Elective Course - I	EXDLC5051	Group A: Data Compression & Encryption
	EXDLC5052	Group B: Sensor Technology
	EXDLC5053	Group C: Microelectronics Devices and Circuit
	EXDLC5054	Group D: Data Structure and Algorithms

*SAT Hours are under Practical head but can be taken as Theory or Practical or both as per the need.

**2 Hours class wise and 2 hours batchwise

#1 Credit = 40 – 45 hours of Internship (Refer Internship document)

PBL - Minor Project Lab I and II:

□ Students can form groups with minimum 2 (Two) and not more than 4 (Four) □ Faculty Load : 1 hour per week per four groups

Program Structure for Third Year UG

			Examination Scheme								
Course	~	Marks									
Code	Course Name			СА		ESE	TW		р	Tetal	
			T2	Average (T1&T2)	IA	LSE	1 VV	U	r	Total	
EXC501	Digital Communication	30	30	30	10	60	-	-	-	100	
EXC502	Digital VLSI Design	30	30	30	10	60	-	-	-	100	
EXC503	Discrete Time Signal Processing	30	30	30	10	60	-	-	-	100	
EXC504	Random Signal Analysis	30	30	30	10	60	-	-	-	100	
EXDLC505	Department Level Elective Course - I	30	30	30	10	60	-	-	-	100	
EXL501	Digital Communication Laboratory	-	-	-	-	-	25	-	25	50	
EXL502	Digital VLSI Design Laboratory	-	-	-	-	-	25	-	25	50	
EXL503	Discrete Time Signal Processing Laboratory	-	-	-	-	-	25	-	-	25	
EXDLL505	Department Level Elective Course Laboratory- I	-	-	-	-	-	25	-	-	25	
EXL506	Business Communication & Ethics	-	-	-	-	-	25	25	-	50	
EXPR53	Project Based Learning – Minor Project Lab – I	-	-	-	-	-	25	-	25	50	
EXXS57	Skill Based Learning –VII	-	-	-	-	-	25	-	-	25	
EXXT58	Technology Based Learning -VIII	-	-	-	-	-	25	-	-	25	
Total		150	150	150	50	300	200	25	75	800	

Technology (EX) Semester-V- Examination Scheme

Program Structure for Third Year UG Technology (EX) <u>Semester-V- Examination Scheme</u>

Course Code	Course Name	Examination Scheme								
		Marks								
				СА		ESE	TW	0	Р	Total
		T1	T2	Average	IA					

				(T1&T2)						
EXC501	Digital Communication	30	30	30	10	60	-	I	-	100
EXC502	Digital VLSI Design	30	30	30	10	60	-	I	-	100
EXC503	Discrete Time Signal Processing	30	30	30	10	60	-	-	-	100
EXC504	Random Signal Analysis	30	30	30	10	60	-	-	-	100
EXDLC505	Department Level Elective Course - I	30	30	30	10	60	-	_	-	100
EXL501	Digital Communication Laboratory	-	-	-	-	-	25	-	25	50
EXL502	Digital VLSI Design Laboratory	-	-	-	-	-	25	-	25	50
EXL503	Discrete Time Signal Processing Laboratory	-	-	-	-	-	25	-	-	25
EXDLL505	Department Level Elective Course Laboratory- I	-	-	-	-	-	25	-	-	25
EXL506	Business Communication & Ethics	-	-	-	-	-	25	25	-	50
EXPR53	Project Based Learning – Minor Project Lab – I	-	-	-	-	-	25	-	25	50
EXXS57	Skill Based Learning –VII	-	-	-	-	-	25	-	-	25
EXXT58	Technology Based Learning -VIII	-	-	-	-	-	25	-	-	25
Total		150	150	150	50	300	200	25	75	800

Program Structure for Third Year UG Technology (EX) <u>Semester-V- Examination Scheme</u>

			Examination Scheme									
Course			Marks									
Code	Course Name	CA				DSD			D	Tetal		
			T2	Average (T1&T2)	IA	- ESE	1 **		r	Totai		
EXC501	Digital Communication	30	30	30	10	60	-	-	-	100		
EXC502	Digital VLSI Design	30	30	30	10	60	-	-	-	100		
EXC503	Discrete Time Signal Processing	30	30	30	10	60	-	-	-	100		
EXC504	Random Signal Analysis	30	30	30	10	60	-	-	-	100		
EXDLC505	Department Level Elective Course - I	30	30	30	10	60	-	-	-	100		
EXL501	Digital Communication Laboratory	-	-	-	-	-	25	-	25	50		
EXL502	Digital VLSI Design Laboratory	-	-	-	-	-	25	-	25	50		

EXL503	Discrete Time Signal Processing Laboratory	-	-	-	-	-	25	-	-	25
EXDLL505	Department Level Elective Course Laboratory- I	-	-	-	-	-	25	-	-	25
EXL506	Business Communication & Ethics	-	-	-	-	-	25	25	-	50
EXPR53	Project Based Learning – Minor Project Lab – I	-	-	-	-	-	25	-	25	50
EXXS57	Skill Based Learning –VII	-	-	-	-	-	25	-	-	25
EXXT58	Technology Based Learning -VIII	-	-	-	-	-	25	-	-	25
Total		150	150	150	50	300	200	25	75	800

Course Code	Course Name	Credits (TH+P+TUT)						
EXC501	Digital Communication	3+0+0						
	1. Applications of Mathematics in Engineering-II							
Prerequisite:	2. Signals and Systems							
_	3. Principles of Communication Engin	eering						
	To describe the basics of information theory and source coding							
Course	To illustrate various error control codes							
Objectives:	To describe baseband system							
	To learn different digital modulation an	d demodulation techniques						
	Apply the concepts of information theorem	ry in source coding						
	Apply different error control systems an	d various error detection codes						
C	Analyse different error correction codes							
Course	Compare various baseband transmission	n methods for digital signals						
Outcomes:	Evaluate the performance of optimum baseband detection in the presence of							
	white noise							
	Compare the performances of different	digital modulation techniques						

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and Course Outlines	Prerequisite Concepts and Course Introduction	-	02	02
. Information Theory and Source Codes	Block diagram of digital communication system, Information content of a source symbol, Source entropy, Average information rate, AWGN channel, and Shannon-Hartley channel capacity theorem	1	03	05
	Introduction of source code, Huffman code,	02		

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Shannon-Fano code		•	
Error Control System and	Introduction of error control system, Automatic Retransmission Query (ARQ) system, Types of ARQ systems and comparison, Forward error correction (FEC) system. Comparison between FEC and ARQ	2	01	03
Detection Codes	Error detection codes: Vertical Redundancy Check (VRC) code, Longitudinal Redundancy Check (VRC) code, Cyclic Redundancy Check (CRC) code and Checksum code	2	02	03
3. Error Correction Codes	Linear block code: Code generation, calculation of minimum Hamming distance, error detection capability, error correction capability, implementation of encoder, error detection, syndrome table, error correction and implementation of decoder		03	
	Cyclic code: Code generation, calculation of minimum Hamming distance, error detection capability, error correction capability, implementation of encoder, error detection, syndrome table, error correction and implementation of decoder	3	03	10
	Convolutional code: Generation, path responses, encoder, state transition table, state diagram, tree diagram, trellis diagram, decoding using Viterbi's algorithm		04	
1. Baseband Transmission	 Block diagram of baseband transmitter- receiver system, Line codes (RZ and NRZ Uni Polar formats, RZ and NRZ Polar formats, NRZ Bipolar format (AMI format), NRZ Manchester format, and Quaternary Polar format). Comparison of line codes with respect to bandwidth, power requirement, synchronization capability, DC level, polarity inversion error and complexity. Power spectral density and spectrum of NRZ Unipolar and Polar formats Inter Symbol Interference (ISI), Inter Channel Interference (ICI). Nyquist criterion for distortion less baseband binary 	4	03	05

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	practical bandwidth			
Optimum Detection of Baseband Signal	Matched filter, Output SNR, Transfer function, Impulse response and Error probability. Integrate and dump receiver, Correlator receiver	5	04	04
5. Digital Modulations	Generation, Detection, Error probability (using signal space representation and Euclidean distance), Bandwidth (using PSD and spectrum except for MSK) and applications of the following modulations: Binary ASK, Binary PSK, Quadrature PSK, Off-Set QPSK, M-ary PSK, Binary FSK, M- ary FSK, 16-ary QASK and MSK	6	12	12
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
	•	•	Total:	42

Books:				
	1. Principles of Communication Systems, Third Edition, H.Taub, D.Schlling			
	and G.Saha, Tata Mc-Graw Hill, New Delhi, 2012			
	2. Modern Digital and Analog Communication Systems, Fourth Edition,			
Text Books	Lathi BP and Ding Z, Oxford University Press, 2009			
	3. Digital Communication System, Fourth Edition, Haykin Simon John			
	Wiley and Sons, New Delhi 2014			
	4. Digital Communications, Fourth Edition, John G. Proakis, McGraw-Hill			
	1. Digital Communication: Fundamentals and applications, Second Edition			
	2. Sklar B, and Ray P. K. Pearson, Dorling Kindersley (India), Delhi, 2009			
Reference	3. Analog and Digital Communication, First Edition, T L Singal, Tata Mc-			
Books	Graw Hill, New Delhi, 2012			
	4. Digital Communication, First Edition, P Ramakrishna Rao, Tata Mc-			
	Graw Hill, New Delhi, 2011			
Useful Links:				
1. https://nptel.ac	c.in/courses/117/101/117101051/			
2. https://nptel.ac	c.in/courses/117/105/117105077/			
3. https://nptel.ac	c.in/courses/108/101/108101113/			
4. https://nptel.ac	4. https://nptel.ac.in/courses/108/102/108102096/			
5. https://nptel.ac	c.in/courses/108/102/108102120/			

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Course Name	Credits (TH+P+TUT)
EXC502	Digital VLSI Design	3+0+0
Prerequisite:	Electronics Devices & Circuits Digital Logic Design	
Course Objectives:	To introduce process flow of VLSI Design To understand MOSFET operation from VLSI design perspective To learn VLSI design performance metric and trade-offs To design, implement and verify combinational and sequential logic circuits using various MOS design styles To provide an exposure to RTL design	
Course Outcomes:	 Explain various tools and process Derive expressions for performative CMOS inverter Design and realize various congiven specifications Explain working of building blo Illustrate various data path circut the VLSI system Design digital systems using RT 	sses used in VLSI Design ance parameters of basic building blocks ombinational and sequential circuits for ocks of semiconductor memory tits and the issues related to the design of TL design technique

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and Course Outlines	Prerequisite Concepts and Course Introduction	-	02	02
Review of MOSFET operation and Fabrication	MOSFET structure and operation, IV characteristics, MOSFET Capacitances, MOSFET scaling	1	02	05

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Overview of VLSI Design Flow, Fabrication process flow of NMOS and CMOS, Lambda based design rules, Stick diagram and mask layout		03	
. Combinational CMOS Logic Circuits	CMOS inverter operation, Voltage Transfer characteristics (VTC), Noise Margins, Propagation Delay, Power Dissipation, Design of CMOS Inverter, Layout of CMOS Inverter	2	03	06
	Realization of CMOS NAND gate, NOR gate, Complex CMOS Logic Circuits, Layout of CMOS NAND, NOR and complex CMOS circuits		03	
	Static CMOS, Pass Transistor Logic, Transmission Gate, Pseudo NMOS, Dynamic CMOS Logic, Domino Logic, NORA, Zipper, C ² MOS		04	
. MOS Design Logic Styles	Design Logic Combinational circuit design: MUX, Decoder using above design styles ,1-bit full adder Concepts of Setup time, Hold time, clocked CMOS SR Latch, CMOS JK Latch, MS –JK Flip Flop, Edge triggered D-Flip Flop, Realization of Shift Register using design styles	3	04	08
. Semiconductor	ROM array, 6T-SRAM (operation, design strategy, leakage currents, sense amplifier), layout of SRAM	4	04	07
Memories	Cell, NAND and NOR flash memory		03	
. Data path and system design issues	Ripple carry adder, CLA adder, carry save adder, carry select adder, carry skip adder, Array Multiplier, Barrel shifter	F	03	00
	On chip clock generation and distribution, Interconnect delay model, interconnect scaling and crosstalk	5	02	09

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Design for testability: Fault Types and models, Controllability and observability, Ad hoc testable design techniques, Scan based techniques, Built-in-self-test, Current monitoring test		04	
6. RTL Design	High Level state machines, RTL design process RTL design of Soda dispenser machine, Laser Based Distance Measurer, FIR Filter	6	04	04
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
			Total:	42

Books:	
Text Books	 CMOS Digital Integrated Circuits Analysis and Design, Third edition, Sung-Mo Kang and Yusuf Leblebici, McGraw Hill, 2012 Digital Integrated Circuits: A Design Perspective, Second edition, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, Pearson Education, 2013
	 Digital Design with RTL design, VHDL and VERILOG, Second edition, Frank Vahid, John Wiley and Sons Publisher, 2010
Reference Books	 VLSI Design: A Circuits and Systems Perspective, Third Edition, Neil H. E. Weste, David Harris and Ayan Banerjee, Pearson Education, 2012 Introduction to VLSI Circuits and Systems, Student Edition, John P. Uyemura, Wiley, 2013 CMOS Circuit Design, Layout and Simulation, Second Edition, R. Jacob
	Baker, Willey, 2002
Useful Links:	

- 1. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ee25/
- 2. https://nptel.ac.in/courses/108/103/108103108/
- 3. <u>http://cmosedu.com/</u>

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Course Name	Credits (TH+P+TUT)
EXC503	Discrete Time Signal Processing	3+0+0
Prerequisite:	Signals & Systems	
Course Objectives:	 To develop a thorough understanding of Discrete Fourier transform and its use in frequency domain filter designing To design and realize IIR filters and FIR filters, gain an appreciation for the trade-offs necessary in the filter design and to evaluate the effects of finite word lengths on the filters. To introduce applications of digital signal processing in the field of biomedical and speech signal processing 	
Course Outcomes:	Identify different types of filters based on pass band of given transfer function Illustrate the concepts of Discrete Fourier transform, Fast Fourier transform and apply in system analysis Design digital IIR and FIR filters to satisfy the given specifications and evaluate the frequency response Apply Digital FIR and IIR filter to realize structures Interpret Finite word length Effect in Digital filter Apply signal processing concepts, algorithms in applications related to the field of biomedical and speech signal processing	

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and	Prerequisite Concepts and Course	-	02	02
Course Outlines	Introduction			
	LTI systems as frequency-selective filters			
Transform	like low pass, high pass, band pass, Notch,		03	
Analysis of	comb, all-Pass filters	1		05
Linear Time	Invertibility of LTI systems, minimum-	1		05
Invariant System	phase, maximum-phase, mixed-phase		02	
	system			

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Relation between DTFT and DFT, Definition and Properties of Discrete Fourier transform (DFT), Inverse DFT, Circular convolution of sequences using DFT and IDFT		04	
The Discrete Fourier Transform and Efficient	Linear filtering Technique based on DFT: Evaluation of Linear filtering using DFT, Linear filtering of long data sequences: overlap add and overlap save method	2	02	10
Computation	Fast Fourier Transform: Radix-2 Decimation in time and Decimation in frequency FFT algorithm and its Inverse, Introduction to Composite -Radix Fast Fourier Transform (FFT)		04	
. Design of Digital Filters and Implementation	Concepts of Infinite Impulse Response (IIR) filter, Mapping of S-plane to Z- plane, Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear transformation Method from analog filter with examples, Design of Digital Low pass and high pass Butterworth and Chebyshev-I filter from analog filter with examples	3	06	10
	² Concepts of Finite Impulse Response (FIR) filter, Symmetric and Anti- symmetric FIR filter, Design Techniques of FIR filter using various window: Rectangular window, Hamming window, Gibb's phenomenon, Comparison of IIR and FIR filter		04	
Digital filter	Realization structures for FIR systems: Cascade form, Frequency sampling structure, Lattice structure, Computational complexities for N length filter	4	03	
structure	Realization structures for IIR systems: Cascade form and parallel form structures, Lattice Ladder structure, Computational complexities for N order filter	5	02	05
. Finite word length Effect in Digital filter	Quantization Noise, Truncation and Rounding, Effect due to Truncation and Rounding, Coefficient quantization error	5	02	04

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Dead band, Zero input Limit cycle oscillations and Overflow Limit cycle oscillations		02	
. Applications of Digital Signal	Voice Processing, Digital Representation of speech signal, Short Time Spectral Analysis of Speech signal, channel Vocoder, Sub-band Coding, Voice privacy system.	6	03	05
Processing	Applications of DSP for ECG signal analysis		01	
	Applications of DSP for Dual Tone Multi- Frequency Signal Detection		01	
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
			Total:	42

Books:		
	1. Proakis J., Manolakis D., " <i>Digital Signal Processing</i> ", 4th Edition, Pearson Education	
Text Books	2. Emmanuel C. Ifeachor, Barrie W. Jervis," Digital Signal Processing",	
I CAL DOOMS	A Practical Approach", Pearson Education	
	3. A Nagoor Kani "Digital Signal Processing", 2 nd Edition. Tata Mc Graw	
	Hill Education Private Limited	
	Sanjit K. Mitra, "Digital Signal Processing – A Computer Based	
	Approach", 4th Edition McGraw Hill Education (India) Private Limited,	
	2013	
	Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing",	
	2nd Edition, Pearson Education, 3 rd Edition, 2010	
	L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal	
Reference Books	Processing", PrenticeHall of India, 2006	
	S Salivahan, C Gnanapriya, "Digital Signal Processing", Mc Graw Hill	
	Education (India) filmited, 4 th Edución, 2015	
	Monson H Hayes, Digital Signal Processing, Schaum's Outline Series, 2^{m}	
	Edition, 2011	
	Rangaraj M. Rangayyan, "Biomedical Signal Analysis- A Case Study	
	Approach", Wiley 2002	
seful Links:		
1. Course: Digital Signal Processing By Prof. S.C Dutta Roy, IIT Delhi		
http://www.npt	http://www.nptelvideos.in/2012/12/digital-signal-processing.html	
2. Course: Digital	2. Course: Digital Signal Processing By Prof. V. M. Gadre, IIT	

Bombay https://nptel.ac.in/courses/108/101/108101174/

3. Course: Digital Signal Processing By Prof. T. K. Basu , IIT Kharagpur <u>https://nptel.ac.in/courses/108/105/108105055/</u>

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Course Name Credits (TH+P+TUT)		
EXC504	Random Signal Analysis	3+0+0	
Prerequisite:	Applications of Mathematics in Engineering-II Signals and Systems		
Course Objectives:	To strengthen the foundations of probability To teach continuous and discrete random variables To explain statistical behaviour of one dimensional and two-dimensional random variables To describe the concept of random process which is essential for random signals and systems encountered in Communications To develop problem solving skills and explain how to make the transition from a real-world problem to a probabilistic model		
Course Outcomes:	 Apply theory of probability in identifying and solving relevant problems Elucidate and Differentiate Random Variables and Vector through the use cumulative distribution function (CDF), Probability density function (PDI probability Mass function (PMF) as well as Joint, Marginal and Condition CDF, PDF and PMF. Articulate expectation and variance of random variables using spec distributions Apply concepts to multiple random variables and investigate significance Central Limit Theorem 		

Illustrate and specify Random processes and determine whether given process
is stationary or wide sense stationary
Describe basic concept of Markov chain related to real world applications

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and Course Outlines	Prerequisite Concepts and Course Introduction	-	02	02
. Basic Concept	Definitions of Probability, Joint, Conditional and Total Probability, Bayes' Theorem, Independence of events.	1	03	04
	Binary symmetric communication channel analysis using Bayes' Theorem.		01	
. Introduction to Random	Continuous & Discrete Random Variables, Probability Density Function, Probability Distribution Function, and Probability Mass Function, Properties of PDF and CDF.	2	04	08
variables	Special distributions- Binomial, Poisson, Uniform, Gaussian and Rayleigh Distributions and its Mean, variance and moments of random variables		04	
. Operations on One Random Variable	Function of a random variable and their distribution and density functions		04	08
	Expectation, Variance, Moments, and Characteristic function of random variable.	3	04	
. Multiple random variables	Pairs of random variables, Joint CDF and Joint PDF		02	
	One function of two random variables, Joint moments, covariance and correlation independent, uncorrelated and orthogonal random variables	4	05	08
	4.3 Central limit theorem and its significance.		01	
. Random	Definitions, statistics of stochastic processes, n^{th} order distribution, second- order properties: mean and autocorrelation, SSS, WSS	5	04	06
110005505	Mean and Correlation Ergodic Processes, Power Spectral Density Functions and its properties		02	

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	6.1 Markov process, Discrete Markov chains		01	
. Markov Chains	The n-step Transition Probabilities, Chapman-Kolmogorov equations (for discrete Markov Chain), Steady State probabilities, Classification of States of Markov Chain	6	04	05
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
			Total:	42

Books:		
Text Books	 T. Veerarajan, "Probability, Statistics and Random Process", Tata McGraw Hill Education, Third Edition (2018). Athanasios Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables, and Stochastic Processes", Tata McGraw Hill Education Henry Stark & John Woods "Probability Statistics and Random Processes 	
	for Engineers, 4th Edition, Pearson Education, 2012	
Reference Books	 Scott Miller and Donald Childers, "Probability and Random Processes with Applications to Signal Processing and Communications", Elsevier Publication Hwei Hsu, "Theory and Problems of Probability, Random Variables, and Random Processes", Schaum's Outline Series, McGraw Hill, 1997 P. Ramesh Babu, "Probability Theory and Random Process", Tata McGraw Hill Education Alberto Leon Garcia, "Probability and Random Processes for Electrical Engineering", second edition, Pearson education Ronald Walpole, et. al., "Probability and Statistics for Engineers and Scientists", 8th edition, Pearson Education P. Kousalya, "Probability, Statistics, and Random Processes", Pearson Education 	
Useful Links:		
1. Introduction t	o probability and Statistics, Prof. G. Srinivasan (IIT Madras):	
https://online	courses.nptel.ac.in/noc21_ma01/preview	
2. Probability and Probability Distributions By Dr. P.Nagesh:		
https://onlinecourses.swayam2.ac.in/cec21_ma02/preview		

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Department Level Elective Course - I	Credits (TH+P+TUT)		
EXDLC5051	Data Compression and Encryption	3+0+0		
Prerequisite:	Applications of Mathematics in Engineering-I			
Course Objectives:	 To understand data compression methods for text, images, video and audio. To study different source coding techniques of data compression. To understand the concepts of cryptography and different algorithms to provide system security To learn to apply different cryptographic techniques 			
Course Outcomes:	 Apply different compression techniques on text Explain different data compression methods and standards Explain symmetric and asymmetric cryptography techniques and standards Apply different ciphers and number theory concepts and algorithms to solve the cryptographic problems Describe methods that provide integrity, confidentiality and authentication Describe system security facilities designed to protect the system from security threats 			

Module No. & Name	Sub Topics			CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module	
. Prerequisites and Course Outlines	Prerequisite Introduction	Concepts	and	Course	-	02	02

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
I. Introduction to Data	Data compression, modelling and coding, Lossless and Lossy Compression, Arithmetic Coding – Decoding, Dictionary Based Compression, Sliding Window Compression: LZ-77, LZ-78, LZW	1	05 08	
Compression	Image Compression: DCT, JPEG, JPEG – LS, Differential Lossless Compression, DPCM, JPEG – 2000 Standards	2	03	
. Video and	Video compression: Motion compensation, temporal and spatial prediction, MPEG-4, H.264 encoder and decoder.	2	03	06
Compression	Sound, Digital Audio, µ-Law and A-Law Companding, MPEG –4 Audio Layer, Advanced Audio Coding (AAC) standard	2	03	
3. Data Security	Security Goals, Cryptographic Attacks and Techniques		02	09
	Symmetric Key: Substitution Cipher, Transposition Cipher, Stream and Block Cipher	3	05	
	DES, double DES and triple DES, AES		02	
Number Theory	Prime Numbers, Fermat's and Euler's Theorem	4	02	04
	Chinese Remainder Theorem		02	
. Asymmetric	Principles of Public Key Crypto System, RSA, Key Management, Deffie-Hellman Key Exchange	~	04	- 08
Key Cryptography	Message Integrity, Message Authentication and Hash Functions, SHA, HMAC, Digital Signature Standards	3	04	
5. System	Intrusion Detection System, Secure Electronic Transactions		02	04
Security	Firewall Design, Digital Immune systems, Biometric Authentication, Ethical Hacking	O	02	
. Course	Recap of Modules, Outcomes, Applications	ons 01		01
Conclusion	and Summarization.	-	01	01
			Total:	42

Books:	
	1. Khalid Sayood, 3rd Edition, Introduction to Data Compression,
Text Books	Morgan Kauffman
	2. Mark Nelson, Jean-Loup Gailly, The Data Compression Book, 2nd

	edition, BPB Publications
	3. William Stallings, Cryptography and Network Security Principles and
	Practices 5th Edition, Pearson Education.
	4. Behrouz A. Forouzan, Cryptography and Network Security, Tata
	McGraw-Hill.
	1. David Salomon, Data Compression: The Complete Reference, Springer
Reference	2. Matt Bishop, Computer Security Art and Science, Addison-Wesley
Books	3. Bernard Menesez, Network Security and Cryptography, Delmar Cengage
	Learning, 7 th Edition
Useful Links:	

1. <u>http://www.nptelvideos.com/video.php?id=989</u>

- 2. <u>https://www.coursera.org/lecture/algorithms-part2/introduction-to-data-compression-OtmHU</u>
- 3. https://nptel.ac.in/courses/106102064/19

4. 4.https://www.coursera.org/learn/crypto?_escaped_fragment_=&trk=profile_certification_titl e

5. https://onlinecourses.nptel.ac.in/noc21_cs16/preview/

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Department Level Elective Course - I	Credits (TH+P+TUT)	
EXDLC5052	Sensor Technology	3+0+0	
Prerequisite: 1. Electronics Devices and Circuits 2. Linear Integrated Circuits			
Course Objectives:	Course1. To explain basics of sensing techniques and parameters2. To familiarize about MEMS sensors and Actuators3. To provide exposure to wireless sensing technologies using sensors		

	signal conditioning.	
	4. To provide insight into various sensor applications	
	1. Describe the transduction principle of various sensors.	
	2. Select sensors suitable for required application	
Course	3. Analyse wireless sensing techniques	
Outcomes:	4. Identify signal conditioning method for particular application	
	5. Design the data acquisition system	
	6. Implement applications using various sensor technologies	

Module No.	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and	Prerequisite Concepts and Course	-	02	02
	1 Classification of Sensors: The sensors are classified with criteria like			
1 Interaction	primary physical quantity to be sensed, transduction principle, material and technology used and application	1	01	03
1. Introduction	2 Criteria to choose a Sensor: Accuracy, Precision, Resolution, Environmental condition, Range, Calibration, and Cost		01	
	3 Smart Sensors: Low-power, Self – diagnostic and Self- calibration		01	
	1 Temperature Sensors: RTD, Thermocouple and Thermistors sensor		02	
2 Types of	2 Proximity Sensors: Inductive (LVDT), Capacitive, Photoelectric and Ultrasonic sensors		02	
Sensors	3 Chemical Sensors: Gas, Smoke, Conductivity and pH sensor	2	02	09
	4 Other Sensors: Optical, Infrared (IR), Sound, Motion, Pressure, Level, Moisture, Humidity, Laser, UV sensors, Ac, IR and Segmented Sensors.		03	
3. MEMS Sensors and Actuators	1 MEMS Sensors: General design methodology, techniques for sensing, Pressure sensor, Acceleration sensor, Accelerometers, Angular Rate sensor and Gyroscopes, Micro machined microphones, Chemical sensors	2	03	06

Module No.	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	2 MEMS Actuators: Techniques for actuation, Digital Micro mirror Device, Micro Machined Valves, Microfluid Devices, IEEE P1451 standard		03	
	1 Bluetooth: Concepts of Pico net, Scatter net, Link types. Application of Blue tooth with Sensors. IEEE P1451standard		02	
4. Wireless Sensing Technologies	2 ZigBee: components, architecture PLE, Self-Organizing networks and Applications with Sensors	3	01	05
	B Near Field Communication (NFC) and RFID: technical requirements, components and characteristics and their applications with Sensors		02	
	1 Signal Conditioning: Block Diagram of Signal Conditioning System, ADC, R2R DAC, Instrumentation Amplifier, Supervisory System (SCADA)	4	02	
5. Data Acquisition and Signal Conditioning	2 Fundamentals of Data Acquisition: Analog and Digital data acquisition system with different configurations, Data loggers, Noise and interference	5	03	08
	3 Utilization of Signal conditioning circuits for Temperature, Pressure, Optical, Strain gauges, Displacement and Piezoelectric Transducers	5	03	
6. Sensor	1 On-board Automobile sensing system, Home appliances sensors, Aerospace Sensors, Sensors for Environmental Monitoring, Biomedical Sensing Applications.		04	00
Applications	2 Radio sensors for industrial applications, Remote Sensing, Ground Penetrating Radars, Underwater sensing, Agricultural Sensor applications.	6	04	08
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01

Module No.	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
			Total:	42

Books:		
	1. An Introduction to Micro electromechanical Systems Engineering, 1st	
	Edition, Nadim Maluf, Kirt Williams, Artech House 2004	
	2. Micro Electro Mechanical System Design, 2 nd Edition, James J. Allen,	
Text Books	Taylor and Francis, 2005	
	3. A Course in Electrical and Electronic Measurements and Instrumentation,	
	19 th Edition, A K Swahney, Dhanpatrai & Co., 2011	
	4. Instrumentation Devices and System, 2 nd Edition, Rangan, Mani and	
	Sharma, Tata McGraw-Hill Publications, 1997	
	1. Sensors, Actuators and their Interfaces: A Multidisciplinary Introduction,	
Reference	Reference 3 rd Edition, Nathan Ida Wiley, 2010	
Books	2. Handbook of Modern Sensors Physics, Designs, and Applications, 4 th	
	Edition, Jacob Fraden Springer, 2010	
Useful Links:		
1. https://nptel.ac.in/courses/108/108/108108147/		
2. https://www.youtube.com/watch?v=vjhp0zTXEsc		
3. <u>http://nptel.ac.in/courses/112103174/3</u>		

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Department Level Elective Course - I Credits (TH+P+TUT)		
EXDLC5053	Microelectronics Devices and Circuits	3+0+0	
Prerequisite:	 Electronic Devices and Circuits Electrical Networks 		
Course Objectives:	 To give exposure to MOSFET devices and issues related to it. To introduce Analog integrated circuits based on MOSFET To give exposure to Analog IC design issues To introduce Novel devices and circuits 		
Course Outcomes:	 Explain Model of FET devices Analyze advanced amplifier circuit Evaluate circuit parameter of given circuit Design amplifier circuit for given overhead Explain working Novel devices and circuit Evaluate capacitance and other physical simple integrated circuits 	s. parameter from Layout of	

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
. Prerequisites and Course Outlines	Prerequisite Concepts and Course Introduction	-	02	02
. MOSFET and scaling	MOS capacitor CV characteristic and concept of accumulation, depletion and inversion; MOSFET characteristics and SPICE models, Long channel and short channel MOSFET, Short channel effects	1	03	06
	Transistors along with mask layout diagram, Multi finger transistor, Scaling of MOSFET, CMOS technology	1,6	03	
	Current Mirror, cascade current source, Wilson current source, bias independent current source using MOSFET	2,3	02	
. Current Mirror and DC analysis	DC analysis and small signal analysis of MOS active load, Differential pair, DC analysis and small signal analysis of MOS advanced active load amplifier, Differential pair	3,4	04	06
. Amplifier with Active loads	CS amplifier with current source load, CS amplifier with diode connected load, CS amplifier with current source load, Common gate circuit	2,4	03	07

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Differential pair, Cascode amplifier, Double Cascoding, Folded Cascod	2,3	04	
. Frequency	Poles and Zeros of CS amplifier, Miller's Theorem, Direct analysis technique, impedance vs frequency	2	04	07
Response	Frequency response of single stage (CS, CG) amplifier. cascode stage, differential stage	2, 4,6	03	07
	Loop gain, feedback characteristic, Positive feedback, oscillator Barkhausen's criteria and oscillator example	5	02	
. Feedback in Circuits	Negative feedback topology: voltage- voltage, voltage-current, current-current, current-voltage fed	3	03	07
	Problem of instability in circuit, Stability analysis of Cascode circuit, Frequency Compensation, miller compensation	3,4	02	
. Introduction of	Introduction to FinFet, GAA FETS, double gate, SOI multigate Mosfet		02	
Novel Devices and circuit Design	Analog Design: Device figure of merit, technology issue in circuit design, Flicker noise, matching behaviour and techniques, Layout rules for transistor matching	1, 5,6	04	06
. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
			Total:	42

Books:		
	1. D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw	
	Hill, 2 nd Edition	
Toxt Dools	2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, "Microelectronic	
Text DOOKS	Circuits Theory and Applications," International Version, OXFORD	
	International Students, 6 th Edition	
	3. Behzad Razavi, Microelectronics, 2 nd Edition	
Reference	1. Behzad Razavi, Analog Circuit Design, 2 nd Edition	
Books	ooks 2. J.P. Coligne Finfet and other Multi-Gate Transistors	
Useful Links:		
1. https://www.semiconductors.org/semiconductors-101/what-is-a-semiconductor/		
2. https://onlinecourses.nptel.ac.in/noc21_ee51/		
3. http://cmosed	3. http://cmosedu.com/	

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Department Level Elective Course – I	Credits (TH+P+TUT)
EXDLC5054	Data Structures and Algorithms	3+0+0
Prerequisite:	Computer Programming	
Course Objectives:	 To introduce the fundamental knowledge & ne To abstract the concept of Algorithm and the solving. To implement fundamental knowledge and app List, Trees, Graphs etc. To understand the working of different techniques. To understanding about writing algorithms and problems with the help of fundamental data str To understand implementation of vario conquer, Dynamic programming. 	eed of Data Structures. se concepts are useful in problem plications of Stack, Queue, Linked Sorting, Searching & Hashing d step by step approach in solving ructures. bus strategies like divide and
Course Outcomes:	 Compare functions using asymptotic analysis and describe the relative merits of worst-, average-, and best-case analysis. Apply various operations on Stack and Queue. Ability to demonstrate the operation of Linked list Ability to demonstrate and apply Trees & Graph data structures. Familiarize with various Sorting- Searching and hashing Algorithms. Ability to analyse different dynamic programming problems. 	

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
i. Prerequisites and Course Outlines	Control Structures, Arrays, Recursion, Pointers, Memory Allocation Techniques.	-	02	02
Introduction to	Introduction to Data Structures, Concept of ADT, Types of Data Structures: Linear and Nonlinear, Operations on Data Structures.		02	
Data Structures and Algorithms	Algorithm: Performance characteristics of algorithm, Importance of Algorithm Analysis, Complexity of an Algorithm, Introduction to Asymptotic Analysis and Notations.	CO1	03	05
	Introduction to Stack, ADT of Stack, Operations on Stack, Array Implementation of Stack		2	
2. Stack & Queue	Applications of Stack- Infix to Postfix Expression Conversion, Infix Expression to Prefix Expression Conversion, Postfix Expression Evaluation	CO2	2	08
	Introduction to Queue, ADT of Queue, Operations on Queue, Array Implementation of Queue, Types of Queue-Circular Queue, Priority Queue, Introduction to Double Ended Queue		3	
	2.4 Applications of various types of Queue		1	
	Introduction to Linked list, Linked List v/s Array, Representation of Linked List, Types of Linked List - Singly Linked List, Doubly Linked List.		2	
3. Linked List	Operations on Singly Linked List and Doubly Linked List	CO3	2	07
	Singly Linked List Application-Polynomial Representation and Addition, Doubly Linked List Application		3	
. Trees & Graph	Trees: Introduction, Tree Terminologies, Binary Tree, Binary Tree Representation, Types of Binary Tree, Binary Tree Traversals, Binary Search Tree, Operations on Binary Search Tree,	CO4	2	09
	Applications of Binary Tree- Expression Tree, Huffman Encoding.		2	

Module No. & Name	Sub Topics	CO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Graph: Introduction, Graph Terminology, Memory Representation of Graph, Operations Performed on Graph.		2	
	Graph Traversal, Breadth First Search, Depth First Search, Applications of the Graph, Shortest Path, Minimum Spanning Tree.		3	
	Searching: Sequential Search, Index Sequential Search, Binary Search.	C05	2	
. Searching –Sorting and Hashing	5.2 Sorting: Bubble Sort, Quick Sort, Merge Sort.		2	6
Algorithms	3 Hashing: Hashing-Concept, Hash Functions, Common hashing functions, Collision resolution Techniques.		2	
6. Dynamic Programming	All pair shortest path (Floyd-Warshall algorithm), Single source shortest path, (Dijkstra's Algorithm), 0/1 knapsack, Travelling salesman problem.	CO6	4	4
ii. Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
Total:		42		

Books:	
Text Books	 Data Structures A Psedocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, Second edition, CENGAGE Learning Data Structures using C, Reema Thareja, Oxford University press Introduction to Data Structure and its Applications Jean-Paul Tremblay, P. G. Sorenson Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms" University Press T.H.Coreman , C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition , PHI publication 2005. Alfred v. Aho, John E. Hopcroft , Jeffrey D. Ullman , "Data structures and Algorithm" Pearson education. Fourth impression 2009
Reference	1. Data Structures Using C & C++, Rajesh K. Shukla, Wiley- India
Books	2. Data Structures Using C, ISRD Group, Second Edition, Tata McGraw-

Hill

- 3. Data Structure Using C, Balagurusamy
- 4. C & Data Structures, Prof. P.S. Deshpande, Prof. O.G. Kakde, Dreamtech press
- 5. Data Structures, Adapted by: GAV PAI, Schaum's Outlines
- 6. Michael Gooddrich & Roberto Tammassia, "Algorithm design foundation analysis and internet examples", Second edition, Wiley student edition

Useful Links:

- 1. https://learndsa.kjsieit.in/
- 2. https://nptel.ac.in/courses/106/102/106102064/
- 3. https://www.coursera.org/specializations/data-structures-algorithms
- 4. https://www.edx.org/course/data-structures-fundamentals
- 5. https://swayam.gov.in/nd1_noc19_cs67/preview

Continuous Assessment (CA):

The distribution of Continuous Assessment marks will be as follows -

1.	Class Test 1 (T-1)	30 marks
2.	Class Test 2 (T-2)	30 marks
3.	Internal Assessment	10 marks

Class Tests (30 Marks):

Two class tests of 30 marks each should be conducted in a semester. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus (but excluding contents covered in Test I) is completed. Duration of each test shall be one hour and 15 Minutes. Average of the two class tests (T-1 and T-2) will be considered for Continuous Assessment.

Internal Assessment(IA):

Marks will be awarded based on the rubrics designed.

Course Code	Course Name	Credits (P+TUT)	
EXL501	Digital Communication Laboratory	1+0	
Lab	1. Analog communication		
Prerequisite:	2. Electronic devices and circuits		
	1. To learn source coding and error control coding	g techniques	
Lab Oblastinum	2. To compare different line coding methods		
Lab Objectives:	3. To distinguish various digital modulations		
	4. To use different simulation tools for digital con	nmunication applications	

	1.	Compare various source coding schemes
	2.	Design and implement different error detection codes
	3.	Illustrate the impulse response of a matched filter for optimum detection
Lab Outcomes:	4.	Demonstrate various digital modulation techniques
	5.	Write accurate documentation for experiments performed
	6.	Apply ethical principles like timeliness and adhere to the rules of the
		laboratory

La		LO	Hr	
b	Experiment Title		s/	
No		ed	La	
•			b	
0	Lab Prerequisites	-	02	
1	Huffman code generation	1,5,6	02	
2	Shannon-Fano code generation	1,5,6	02	
3	Vertical redundancy Check (VRC) code generation and error detection	2,5,6	02	
4	Horizontal Redundancy Check (HRC) code generation and error detection	2,5,6	02	
5	Cyclic redundancy Check (CRC) code generation and error detection	2,5,6	02	
6	Checksum code generation and error detection	2,5,6	02	
7	Compare the performances of HRC and Checksum	2,5,6	02	
8	Linear block code generation and error detection	2,5,6	02	
	Error detection and correction using Hamming code (virtual lab	2,5,6		
9	http://vlabs.iitb.ac.in/vlabsev/labs/mit_bootcamp/comp_networks_sm/labs/		02	
	exp1/index.php)			
10	Cyclic code generation and error detection	2,5,6	02	
11	Convolutional code generation	2,5,6	02	
12	Line Codes generation and performance comparison	1,5,6	02	
13	Spectrum of line codes (NRZ unipolar and polar)	1,5,6	02	
14	Impulse responses of ideal (Nyquist filter) and practical (Raised cosine filter) solution for zero ISI	3,5,6	02	
15	Matched filter impulse response for a given input	3,5,6	02	
16	Generation (and detection) of Binary ASK	4,5,6	02	
17	Generation (and detection) of Binary PSK	4,5,6	02	
18	Generation (and detection) of Binary FSK	4,5,6	02	
19	Generation (and detection) of OPSK	4,5,6	02	
20	Generation (and detection) of M-ary PSK	4,5,6	02	
21	Generation (and detection) of M-ary FSK	4,5,6	02	
22	Generation (and detection) of 16-ary QASK	4,5,6	02	
23	Generation (and detection) of MSK	4,5.6	02	
		Total	48*	
*Minimum 28 Hrs. Lab / Mini Project to be conducted				
~				

Suggested list of experiments is given as 23 experiments. One can add / subtract then this according to the syllabus and time. Term work should consist of minimum 8 experiments.

http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/comp_networks_sm/labs/exp1/index.php)

Term work:

Term work should consist of a minimum of 8 experiments.

Journal must include assignments on content of theory and practical of the course.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Total 25 Marks (Experiments: 15-marks, Assignments/ Case study/ Project/ demo/ presentation: 10-marks)

Oral/Practical/P&O:

Practical examination will be based on the experiment list and content of the entire theory syllabus and carries 25-Marks

Course Code	Course Name	Credits (P+TUT)
EXL502	Digital VLSI Digital Laboratory	1 + 0
Lab Prerequisite:	Digital Logic Design	
	1. To simulate the various phenomenon related t	o CMOS circuits
Lab	2. To analyse simple CMOS circuits using SPIC	E tools
Objectives: 3. To simulate the logic circuits using various design style		
Ū	4. To draw mask layout of various circuits	
	1. Implement SPICE model for given combinat	ional and sequential CMOS
	circuits.	-
	2. Perform various analysis like operating poin	t, dc, transient etc. of given
	CMOS circuits.	_
	3. Design, simulate, and verify CMOS circuit for	r given specification and
Lab Outcomes:	Evaluate performance of the same.	
	4. Draw layout of given CMOS circuit an	d also able extract various
	parasitic using open source layout tool like M	agic.
	5. Write accurate documentation for experim	ents performed.
	6. Apply ethical principles like timeliness a	nd adhere to the rules of the
	laboratory.	

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
0	Lab Prerequisites	-	02
1	Constant Voltage and Constant field MOSFET scaling	2,5,6	02
2	Layout of MOSFET and extraction of parasitic capacitances	4,5,6	02

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
3	Voltage transfer characteristics of CMOS inverter and calculation of Noise Margin and static power	2,5,6	02
4	Transient Analysis of CMOS inverter and calculation of t_{pHL} , t_{pLH} , t_r , t_r and average power	3,5,6	02
5	Design of CMOS inverter for given specifications	3,5,6	02
6	Layout of CMOS inverter and comparison of pre layout and post layout performance	4,5,6	02
7	Voltage transfer characteristics of 2 input NAND/NOR gate and calculation of noise margins and validation using equivalent inverter approach	2,5,6	02
8	Transient Analysis of 2 input NAND/NOR CMOS gate and calculation of t_{pHL} , $t_{r,LH}$, t_r , average power and validation using equivalent inverter approach	3,5,6	02
9	Layout of 2 input CMOS NAND/NOR gate and comparison of pre layout and post layout performance	4,5,6	02
10	Static and transient analysis of Complex CMOS gate	3,5,6	02
11	Layout of complex CMOS gate using Euler path	4,5,6	02
12	Implementation of various combinational and sequential circuits using different design styles	1,5,6	02
13	Design and implementation of NAND based and NOR based ROM array	3,5,6	02
14	Performance analysis of 6T-SRAM Cell	3,5,6	02
15	Design of 6T SRAM cell robust read and write operation	3,5,6	02
16	Performance analysis of 1T and 3T DRAM Cell	3,5,6	02
17	RTL design of Soda dispenser machine	1,5,6	02
18	RTL design of FIR Filter	1,5,6	02
		Total	38*
*Minii	num 28 Hrs. Lab / Mini Project to be conducted		

https://vlsi-iitg.vlabs.ac.in/

Term work:

- 1. Term work should consist of a minimum of 8 experiments.
- 2. Journal must include assignments on content of theory and practical of the course.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/ Case study /Project/ demo/ presentation: 10-marks)

Oral/Practical/P&O:

Practical examination will be based on the experiment list and content of the entire theory syllabus and carries 25-Marks

Course Code	Course Name	Credits (P+TUT)	
EXL503	Discrete Time Signal Processing Laboratory	1+0	
Lab Prerequisite:	Signals and Systems		
Lab Objectives:	 To carry out basic discrete time signal processing operations To implement and design FIR filters and IIR filters To implement applications related to the field of biomedical signal processing and audio signal processing 		
Lab Outcomes:	 Demonstrate their ability to perform frequency analysis of different discrete time sequences. Perform basic signal processing operations such as circular convolution of discrete time sequences. Design and implement IIR & FIR Filters for given specifications. Analyse and Implement applications related to the field of biomedical signal processing and audio signal processing Write accurate Documentation for experiments performed. Apply ethical principles like timeliness and adhere to the rules of the laboratory 		

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
0	Lab Prerequisites	-	02
1	Impulse response of Discrete Time System	1,5,6	02
2	4-point DFT of Discrete Time Sequence	1,5 ,6	02
3	Circular Convolution of Discrete Time Sequence	1,2,5,6	02
4	8- point DFT of Discrete Time Sequence	1,5,6	02
5	Butterworth IIR filter using Impulse Invariance Transformation	3,5,6	02
6	Butterworth IIR filter using Bilinear Transformation Technique	3,5,6	02
7	Chebyshev filter using Bilinear Transformation Technique	3,5,6	02
8	Impulse response of FIR band pass filter	3,5,6	02

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
9	Impulse FIR filter using Rectangular Window	3,5,6	02
10	Case study on different applications of Digital Signal Processing	4,5,6	08
		Total	28

vlabs.iitkgp.ernet.in/dsp/#

Term work:

- 1. Term work should consist of a minimum of 8 experiments.
- 2. Journal must include assignments on content of theory and practical of the course.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/Case study/Project/demo/presentation: 10-marks)

Course Code	Department Level Elective Course – I Laboratory	Credits (P+TUT)	
EXDLL5051	Data Compression and Encryption Laboratory	1+0	
Lab Prerequisite:	Any suitable programming skills		
Lab Objectives:	To apply statistical and dictionary methods for text compression To understand on how to apply the concept of quantization and audio/image compression To understand the concepts of Encryption and techniques of Encryption To understand on how to apply the cryptographic algorithm		
Lab Outcomes:	 Implement Text compression Techniques Implement Image compression techniques Implement data Encryption technique Implement public key cryptography algorithms Write accurate documentation for experiments perfo Apply ethical principles like timeliness and adhere laboratory 	rmed e to the rules of the	

Lab	Experiment Title	LO	Hrs/
No.		Mapped	Lab
0	Lab Prerequisites	-	02

1	Write a program to encode and decode message and find code efficiency using Arithmetic Coding	1,5,6	02
2	Write a program to encode and decode the text using Dictionary methods	1,5,6	02
3	Write a program to Discrete Cosine Transform for image compression	2,5,6	02
4	To study DPCM Audio Compression Method	2,5,6	02
5	To study the effect of Uniform and Non uniform Quantization on speech signal	2,5,6	02
6	Write a program to apply Affine Cipher Encoding and decoding for data encryption	3,5,6	02
7	Write a program to apply Caesar Cipher Encoding and decoding for data encryption	3,5,6	02
8	Write a program to implement Diffie-Hellman Public Key Cryptography	4,5,6	02
9	To study RSA Public Key Encryption and Decryption Algorithm	4,5,6	02
10	To study the Message Authentication algorithm	4,5,6	02
11	Case Study / Mini Project	1,2,3,4,5,6	06
		Total	28

1/cse29-iiith.vlabs.ac.in/

Term work:

- 1. Term work should consist of a minimum of 8 experiments.
- 2. Journal must include assignments on content of theory and practical of the course.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/Case study/Project/demo/presentation: 10-marks)

Course Code	Department Level Elective Course – I Laboratory	Credits (P+TUT)	
EXDLL5052	Sensor Technology Laboratory	1+0	
Lah	1. Knowledge of implementing Electronic Circuits 2. Interfacing devices for processing such as Au	rduino Raspherry Pi	
Prerequisite:	Microprocessors and Microcontrollers.	raumo, raspoony ri,	
	3. Signal Conditioning Circuits		

	1. To implement basic applications using different types of Sensors.
Lab	2. To apply the knowledge of MEMS and Smart sensors by implementing
Chiectives	applications
Objectives.	3. To implement signal conditioning circuits to shape the input signals.
	4. To interface sensors with various communication Technologies
	1. Develop basic sensor application circuit using sensors like temperature,
	smoke, humidity, moisture sensors.
	2. Apply the smart sensors and connect them to different platforms like wired
	and wireless.
Lah	3. Design suitable signal conditioning to different types of sensor outputs for
Duteomos	further processing.
Outcomes.	4. Implement applications based on A to D convertors and D to A convertors
	and connect them to sensor circuits through different case studies.
	5. Write accurate documentation for experiments performed.
	6. Apply ethical principles like timeliness and adhere to the rules of the
	laboratory

Lab	Exporiment Title	LO	Hrs/
No.	Experiment Title		Lab
0	Lab Prerequisites	-	02
1	Study of different types of sensors by observing them in the lab and study the important parameters like accuracy, Precision, Resolution, Range, tolerance limits etc.	1,5,6	02
2	Implement a circuit to detect smoke.	1,5,6	02
3	Design bimorph cantilever which acts as a pressure sensor.	2,5,6	02
4	Model and simulate Electro-mechanical actuator. Do dc and transient analysis	2,5,6	02
5	Simulate the harvested electrical power from mechanical vibrations using piezoelectric cantilever beam.	2,5,6	02
6	Model and simulate accelerometer	2,5,6	02
7	Implement A to D conversion	3,5,6	02
8	Implement R2R D to A convertors	3,5,6	02
9	Interfacing the Zigbee with humidity sensors.	4,5,6	02
10	Interfacing RFID with proximity sensors	4,5,6	02
11	Study of NFC and suitable sensors for interfacing.	4,5,6	02
12	Case Study / Mini Project	1 to 6	04
		Total	28

https://ssp-iitb.vlabs.ac.in/

Term work:

- 1. Term work should consist of a minimum of 8 experiments.
- 2. Journal must include assignments on content of theory and practical of the course.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/ Case study/ Project/ demo/ presentation: 10-marks)

Course Code	Department Level Elective Course – I Laboratory	Credits (P+TUT)	
EXDLL5053	Microelectronics Devices and Circuits Laboratory	1 + 0	
Lab Prerequisite:	Electronic Devices & Circuits		
Lab Objectives:	 To provide insight into Analog circuit design using CA To gain proficiency in integrated circuit analysis using To provide exposure to Layout IC design To provide insight into Analog design flow process 	provide insight into Analog circuit design using CAD tools gain proficiency in integrated circuit analysis using LTspice provide exposure to Layout IC design provide insight into Analog design flow process	
Lab Outcomes:	 Design amplifier circuits in LTspice simulation env Design layout of amplifier inverter in Electric Analyse from the data available from simulation in Asses different circuit and device models Write accurate documentation for experiments perfe Apply ethical principles like timeliness and adhere Laboratory 	environment. n in LTspice erformed. ere to the rules of the	

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
0	Lab Prerequisites	-	02
1	Installations and demonstration of CAD Design software: types, working roles in IC design	5,6	02
2	Plot long and short channel MOSFET characteristics	3,4,5,6	02
3	DC analysis of advance active load amplifier	3,4,5,6	02
4	DC analysis of Cascode amplifier	3,4,5,6	02
5	Transient analysis of Cascode amplifier	3,4,5,6	02
6	AC Analysis of Cascode amplifier	3,4,5,6	02
7	AC analysis of Differential amplifier	3,4,5,6	02
8	CMOS inverter simulation	3,4,5,6	02
9	CMOS inverter Layout simulation, DRC, LVS steps.	2,5,6	02
10	Layout of CS amplifier	2,5,6	02
11	Implement available Compact model equation in octave	3,5,6	02
12	Implementation of CAD Design software using simple	5,6	02

	techniques/available open source software for mobile devices		
13	Study of Verilog-A software and design flow	5,6	02
		Total	28
Virtua	Lab Links:		
1. http	://vlabs.iitkgp.ernet.in/be/		
2 httr	o.//cmosedn.com/		

3. https://www.youtube.com/watch?v=rXTEmojksd4

Term work:

- 1. Term work should consist of a minimum of 8 experiments.
- 2. Journal must include assignments on content of theory and practical of the course.
- 3. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/Case study/Project/demo/presentation: 10-marks)

Course Code	Department Level Elective Course– I Laboratory	Credits (P+TUT)
EXDLL5054	Data Structures and Algorithm Laboratory	1+0
Lab Prerequisite:	 Computer Programming Computer Programming Laboratory 	
Lab Objectives:	 To implement basic data structures such as linked lists, stacks and queues To solve problem involving graphs and trees To choose appropriate data structure and apply it to various problems 	
Lab Outcomes:	 Choose appropriate data structure as applied to specify problem definition and to select appropriate problem solving strategies. Use linear and non-linear data structures like stacks, queues, linked list etc. Calculate time complexity and space complexity of an algorithm. Analyse different divide and conquer problems, dynamic programming problems. Write accurate documentation for experiments performed. Apply ethical principles like timeliness and adhere to the rules of the laboratory. 	

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab
0	Lab Prerequisites	-	02
1	mplementations of stack menu driven program	1,5,6	02

Lab No.	Experiment Title	LO Mapped	Hrs/ Lab		
2	* Implementations of Infix to Postfix Transformation and its evaluation program	2,5,6	02		
3	mplementations of queue menu driven program	1,5,6	02		
4	^k Implementations of double ended queue menu driven program	1,2,5,6	02		
5	* Implementation of different operations on linked list – copy, concatenate, split, reverse, count no. of nodes etc.	1,2,5,6	02		
6	mplementation of polynomials operations (addition, subtraction) using Linked List	2,5,6	02		
7	*Implementations of Binary Tree menu driven program	2,5,6	02		
8	*Implementation of construction of expression tree using postfix expression.	3,5,6	02		
9	[*] Implementations of Graph menu driven program (DFS & BSF)	3,5,6	02		
10	Write a program for a. selection sort b. insertion sort	3,5,6	02		
11	 Write a program using Divide and Conquer for Merge sort analysis Quick sort analysis 	4,5,6	02		
12	Write a program using Divide and Conquer for a. binary search p. finding minimum and maximum	4,5,6	02		
13	*Write a program for Optimal binary search tree using dynamic programming	4,5,6	02		
14	*Write a program for Travelling salesman problem using dynamic programming	4,5,6	02		
	Total 30				
* Comp	* Compulsory / Minimum 28 Hrs. Lab / Mini Project to be conducted				

Useful Links:

1. https://www.programiz.com/dsa

2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

rm work:

- 1. Term work should consist of a minimum of 8 experiments
- 2. Journal must include assignments on content of theory and practical of the course
- 3. The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.
- 4. Total 25 Marks (Experiments: 15-marks, Assignments/Case study/demo/presentation: 10marks

Course Code	Course Name	Credits (TH+P+TUT)
Course Code	Course Name	Credits (TH+P+TUT)

EXL506	Business Communication & Ethics Laboratory	0+2+0	
Hardware Requirements:	 PC With following Configuration 1. Intel Dual core Processor or higher 2. Minimum 4 GB RAM 3. Minimum 40 GB Hard disk 		
Software Requirements:	 Microsoft Windows 10 Desktop OS Language Laboratory Software: ODLL (Orell Digital Language Laboratory) 		
Lab Prerequisite:	Fundamental knowledge of Professional Community in semester II	unication Skills as acquired	
Course Rationale:	 This curriculum is designed to build up a professional and ethical approach, effective oral and written communication with enhanced soft skills. Through practical sessions, it augments student's interactive competence and confidence to respond appropriately and creatively to the implied challenges of the global Industrial and Corporate requirements. It further inculcates the social responsibility of engineers as technical citizens. 1. To discern and develop an effective style of writing important 		
 Lab Objectives: Lab Objectives: To investigate possible resources and plan a successful job c To comprehend the dynamics of professional communication of group discussions, meetings, etc. required for career enhat To develop creative and impactful presentation skills To ehavio personal traits, interests, values, aptitudes and skill To understand the importance of integrity and develop a per ethics 		successful job campaign al communication in the form l for career enhancement ion skills ptitudes and skills nd develop a personal code of	
Lab Outcomes:	1. Plan and prepare effective business/ technical documents, which will i turn provide a solid foundation for their future managerial roles. 2. Strategize their personal and professional skills to build a professional image and meet the demands of the industry. 3. Emerge successful in group discussions, meetings and result-oriente agreeable solutions in-group communication situations. 4. Deliver persuasive and professional presentations. 5. Develop creative thinking and interpersonal skills required for effective professional communication 6. Apply codes of ethical conduct, personal integrity and norms or organizational behaviour		

Module No. & Name	Sub Topics	TO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
Prerequisites and	Prerequisite Concepts and Course		02	02
Course Outlines	Introduction	-	02	02
. Advanced	1. Classification of Reports:	1.6	01	06
Technical Writing:	Classification on the basis of:	1,0	01	00

Module No. & Name	Sub Topics	TO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
Project/ Problem	Subject Matter (Technology		• F - •	
Resed Learning	Accounting Finance Marketing			
Dascu Learning	etc)			
	Time Interval (Periodic One-time			
	Special)			
	Eunction (Informational Analytical			
	etc.) Physical Eactors			
	(Memorandum Letter Short &			
	Long)			
	2 Donta of a Long Formal Deports			
	2. Faits of a Long Formal Report.			
	Prefatory Faits (From Waiter) Penert Proper (Main Rody)		01	
	Appended Parts (Back Matter)			
	Appended Faits (Dack Matter)			
	5. Language and Style of Reports			
	Numbering Style of Chapters			
	Sections Figures Tables and		01	
	Equations		01	
	Proofreeding through Plegierism			
	Checkers			
	A Definition Durpose & Types of			
	4. Demittion, Fulpose & Types of Proposals			
	Solicited (in conformance with		01	
	RFP) & Unsolicited Proposals		01	
	Types (Short and Long proposals)			
	5 Parts of a Proposal			
	Flements			
	Scope and Limitations		01	
	Conclusion			
	6 Technical Paper Writing			
	Parts of a Technical Paper (Abstract			
	Introduction Research Methods			
	Findings and Analysis Discussion			
	Limitations Future Scope and		01	
	References)			
	Language and Formatting			
	Referencing in IEEE Format			
	2.1. Cover Letter & Resume			
	Parts and Content of a Cover Letter			
Employment Skills	Difference between Bio-data.		01	0.5
	Resume & CV	2,4	01	06
	Essential Parts of a Resume			
	Types of Resume (Chronological,			

Module No. & Name	Sub Topics	TO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Functional & Combination)			11200000
	2.2 Verbal Aptitude Test Modelled on CAT, GRE, GMAT	•	01	
	exams			
	2.3 Group Discussions Purpose of a GD Parameters of Evaluating a GD		01	
	Types of GDs (Normal, Case-based & Role Plays)		01	
	GD Etiquettes		01	
	2.4 Personal Interviews Planning and Preparation Types of Questions Types of Interviews (Structured, Stress, Behavioural, Problem Solving & Case-based) Modes of Interviews: Face-to-face (One-to one and Panel) Telephonic, Virtual		01	
	3.1 Conducting Business Meetings Types of Meetings Meeting etiquettes		01	
. Business Meetings	3.2 Documentation Notice Agenda Minutes	3, 6	01	02
1. Technical/ Business	 4.1 Effective Presentation Strategies Defining Purpose Analyzing Audience, Location and Event Gathering, Selecting & Arranging Material 	2, 4	01	02
Presentations	4.2 Structuring a Presentation Making Effective Slides Types of Presentations Aids Closing a Presentation		01	
. Interpersonal Skills	Emotional Intelligence Motivation Assertiveness Time Management Stress Management	5, 6	01 01 01 02 02	08
	5.2 Start-up Skills	2, 5	01	

Module No. & Name	Sub Topics	TO Mapped	Hrs/ Sub Topic	Total Hrs/ Module
	Financial Literacy Risk Assessment Data Analysis (e.g. Consumer Behaviour, Market Trends, etc.)			
6. Corporate Ethics	6.1 Intellectual Property Rights Copyrights Trademarks Patents	6	01	02
·····	6.2 Case Studies Cases related to Business/ Corporate Ethics	1 to 6	01	
Course Conclusion	Recap of Modules, Outcomes, Applications and Summarization.	-	01	01
			Total:	28

Activity No.	Activity/ Assignment Title (In the form of Short Notes, Questionnaire/ MCQ Test, Role Play, Case Study, Quiz, etc.)	Hrs/ Lab
	Test of English as Foreign Language (TOEFL)	02
	Group discussion (Practice session)-I	02
	Group discussion (Practice session)-II	02
	Final Group discussion-I	02
	Final Group discussion-II	02
	English Aptitude Test	02
	Resume Writing	02
	Mock interview	02
	Role play techniques for interpersonal skills	02
	Project Report Presentation-I	02
	Project Report Presentation -II	02
	Technical proposal	02
13.	Corporate Ethics/role play/case studies	02
	Business Meetings: case studies/role play	02
	Total:	28

Books:	
	1. Sanjay Kumar & PushpLata (2018). Communication Skills a workbook,
Tarit Da alar	New Delhi: Oxford University Press.
Text DOOKS	2. Bovée, C. L., & Thill, J. V. (2021). Business communication today. Upper
	Saddle River, NJ: Pearson.

	1. Arms, V. M. (2005). Humanities for the engineering curriculum: with
	selected chapters from Olsen/Huckin: Technical writing and professional
	communication, second edition. Boston, MA: McGraw-Hill.
	2. Butterfield, J. (2017). Verbal communication: Soft skills for a digital
	workplace. Boston, MA: Cengage Learning.
	3. Masters, L. A., Wallace, H. R., & Harwood, L. (2011), Personal
Reference	development for life and work Mason: South-Western Cengage Learning
Books	4 Dobbing S D Judgo T A & Compbell T T (2017) Organizational
	4. Robbins, S. F., Judge, T. A., & Campbell, T. T. (2017). Organizational
	benaviour. Harlow, England: Pearson.
	5. Meenaksni Raman, Sangeeta Sharma (2004) Technical Communication,
	Principles and Practice. Oxford University Press
	6. Archana Ram (2018) Place Mentor, Tests of Aptitude for Placement
	Readiness. Oxford University Press
Useful Video lin	ks:
1. TOEFL listening	ng Skill
ttps://www.youtul	be.com/watch?v=jSUh0Civuv4
2. MBA Interview	N
https://www.yo	outube.com/watch?v=cwW9OBNuwCw
3. How to write a	successful CV
https://www.yo	utube.com/watch?v=U0JAfqEak2c
4. Interview tech	niques (How to answer tell me about yourself)
https://www.yo	outube.com/watch?v=m5kR7TPAkSw
5. The 4 types of	team members you can hire
https://www.yo	outube.com/watch?v=5bYYFfpbSqc
6. Every Meeting	Ever
https://www.yo	outube.com/watch?v=K7agjXFFQJU
Assessment:	
Term Work (25	Marks)
Term work of 2	5 Marks shall consist of a minimum 8 Assignments.
The distribution of	of marks for term work shall be as follows:
Assignment: 15 N	Aarks
Book Report (har	d copy): 10 Marks
Note: The final of	certification and acceptance of term work ensures the satisfactory performance
of laboratory wor	k and minimum passing in the term work.
Oral (25 Marks)	
Oral Examination	on will be based on a GD & the Project/Book Report presentation.
1	Group Discussion: 10 Marks
2	Project Presentation: 15 Marks
Note:	J · ····· · · · · ·
1. The Main Bo	dy of the project/book report should contain a minimum 25 nages (excluding
Front and Rad	es en project coor report should contain a minimum -c pages (excluding est matter)
$\begin{array}{c} 1 \text{ The group size} \\ 2 \text{ The group size} \end{array}$	re for the final report presentation should not be less than 5 students or exceed 7
2. The group siz	a for the final report presentation should not be less than 5 students of exceed 7
3 There will he	an end-semester presentation based on the book report
3. There will be	an end–semester presentation based on the book report.

Course Code	Project Based Learning Credits (TH+P+TUT)		
EXPR53	Minor Project Lab – I	0 +1+ 0	
Prerequisite:	 Microcontrollers Linear Integrated Circuits Mini Project 1B: Arduino & Raspberry Pi based Projects 		
Minor Project Objectives:	 To develop background knowledge of Embedded Systems. To understand the design of embedded systems. To choose proper microcontroller for Embedded systems To understand use of wireless sensors/communications with Embedded systems To understand communication techniques. To write programs for embedded systems and real time operating systems / IoT 		
Minor Project Outcomes:	 Outline the embedded systems concept with design metrics Outline microcontroller's concept. Implement the Embedded systems with different sensors and peripherals as IoT. Implement the Embedded systems with different communication protocols as IoT. Analyse concepts of Real time operating systems. Design embedded system applications using sensors, peripherals and RTOS 		

Module No. & Name	Sub Topics	CO Ma pp ed	H rs / S u b T o pi c	H rs / T o pi c
1. Introducti on	Definition of Embedded System, Embedded Systems Vs General Computing Systems, Classification, Major Application Areas. Characteristics and quality attributes (Design Metric) of embedded system	1	02	04
. Controller boards and Programm	ARM LPC 21XX (2148), STM32 boards and Texas MSP 430 lunchbox/ Tiva C board and PIC/PSoc* 2 Comparison of C and embedded C, Data Types, Variable, Storage	2	01	04

Module No. & Name	Sub Topics	CO Ma pp ed	H rs / S u b T o pi c	H rs / T o pi c
ing – Embedded	Classes, Bit operation, Arrays, Strings, Structure and unions, Classifier			
С	⁸ Exercise: Identify the suitable board required for the particular application with respect to design metrics. (Hint: check clock frequency (speed), memory (program and data), no. of ports for peripherals, timers/counters and serial communication requirement for project)		01	
	¹ Suggested Way to Identify: https://predictabledesigns.com/how- to-selectthe-microcontroller-for-your-new-product/		01	
. Interfacing	Sensors and Signal Conditioning Circuits amplifiers /attenuators /filters /comparators/ADC and DAC) , Interfacing with GLCD/TFT display, Relays and Drivers for interfacing Motors (DC and stepper)		02	
Sensors and perip herals using	2 Exercise: Understand the Interfacing requirement like drivers, signal condition circuits for sensors, etc. for the selected application	3	01	05
Embedded C	Study Material: For LCD interfacing with MSP430 Launch Pad https://microcontrollerslab.com/lcd-interfacing-msp430- launchpad/#:~:text=LCD%20interfacing%20with%20MSP430%2 Omicrocontroller,Now%20I%20will&text=It%20requires%205%2 Ovolts%20dc,and%20seco nd%20pin%20is%20vcc.		02	
	Serial communication, CAN bus, I2C, MOD bus, SPI		01	
	2 Interfacing with Wi-Fi, Bluetooth ,ZigBee, LoRa, RFID and putting data on IoT		01	
Communic	Interfacing with GSM module, GPS module, SD card		01	
ation with	application and test it	Λ	01	05
programm ing in Em bedded C	5 STM32:https://controllerstech.com/serial-transmission-in- stm32/#:~:text=Serial%20Transmission%20in%20Stm32&text=U ART%20is%20widely%20used%20for, amongst%20which%20communication%20is%20 done. LPC2148: https://www.electronicwings.com/arm7/lpc2148-uart0 MSP430: https://www.ti.com/lit/ml/slap117/slap117.pdf	4	01	05
. Real Time Operating	Operating system basics, Types of OS, Tasks, process, Threads 2 Multiprocessing and Multitasking, Task scheduling	5	02 01	04

Module No. & Name Systems	Sub Topics	CO Ma pp ed	H rs / S u b T o pi c	H rs / T o pi c
[RTOS]			01	
. Cloud/ Web server	 Implementation on web server Thingspeak, AWS cloud platform for IoT based programming and modelling Exercise : Perform ESP8266 interface with microcontroller Study Material: STM32: https://circuitdigest.com/microcontroller-projects/interfacingesp8266-with-stm32f103c8-stm32-to-create-a-webserver LPC2148: https://circuitdigest.com/microcontroller-projects/iot-based-ARM7- LPC2148-webserver-to-control-an-led MSP430: https://circuitdigest.com/microcontroller-projects/iot-based-ARM7- 	6	01 01 01	04
		Т	otal	26

Books:	
Text Books	 Shibu K.V," Introduction to Embedded Systems", Mc Graw Hill, 2nd edition. Frank Vahid, and Tony Givargis, "Embedded System Design: A unified Hardware/Software Introduction", Wiley Publication. Raj Kamal," Embedded Systems Architecture, Programming and design", Tata McGraw-Hill Publication. 4. Dr. K.V.K.K. Prasad, "Embedded Real Time Systems: Concepts, Design & Programming", Dreamtech Publication.
Reference Books	 Iyer, Gupta," Embedded real systems Programming", TMH David Simon, "Embedded systems software primer', Pearson Andrew Sloss, Dominic Symes and Chris Wright, "ARM_System_Developers_GuideDesigning_and_Optimizing_System_Softwa re" Elsevier and Morgan Kaufmann Publishers.
Useful Link	KS:

- 1. Introduction to Embedded System Design (using MSP430)
- https://onlinecourses.nptel.ac.in/noc20_ee98/preview
- 2. Embedded System Design with ARM https://onlinecourses.nptel.ac.in/noc20_cs15/preview
- 3. Embedded systems https://nptel.ac.in/courses/108/102/108102045/
- 4. Master Microcontroller and Embedded Driver Development (MCU1) STM32 Udemy course link mastering microcontrollers with peripherals
- 5. Texas Instruments (TI)

Trainings: https://e2e.ti.com/support/archive/universityprogram/educators/w/wiki/2103/training-support

6. Texas Instruments (TI) Teaching material/ text books:

https://e2e.ti.com/support/archive/universityprogram/educators/w/wiki/2035/textbooks

Continuous Assessment: Practical (25 Marks) A. Guideline of Minor project are as follows :

- 1. To achieve proper selection of Minor Projects. Students should do a survey of different microcontroller board from given microcontroller series tools and identify which is most suitable for their selected topic. They should consult with their Guide/Mentors / Internal committee to finalize it.
- 2. Students shall submit implementation plan in the form of Smart Report/Gantt/PERT/CPM chart, which will cover weekly activity of minor project.
- 3. A logbook to be prepared by each group, wherein group can record weekly work progress. Guide/ supervisor will verify it and will put notes/comments.
- 4. Guide/supervisor guidance is very much important during minor project activities; however, focus shall be on self-learning.

Suggested steps for Minor project selection and implementation

Minor project should be completely microcontroller based

Follow these steps:

- a. Take specification, using these specifications design project.
- b. Select proper microcontroller board considering features and requirements of project.
- c. Program it using Embedded C and perform verification of each module (sensors/communication protocol)
- d. Test Functional Simulation and verify it using simulation tool.

e. Make hardware connection on GPP of peripherals with microcontroller board and execute the program.

f. Troubleshoot if not get expected result.

B. Project Topic selection and approval :

- 1. The group may be of maximum THREE (03) students.
- 2. Topic selection and approval by 2 Expert faculties from department at the start of semester.
- 3. Log Book to be prepared for each group to record the work progress in terms of milestones per week by students. Weekly comment, remarks to be put by guiding faculty. Both students and faculty will put signature in it per week. The log book can be managed online with proper authentication method using Google sheets/forms or open source project management software.

C. Project Report Format:

- 1. Report should not exceed 30 pages. Simply staple it to discourage use of plastic.
- 2. Report must contain block diagram, circuit diagram, screenshot of outputs and datasheets of microcontrollers and peripherals (Include only required information pages).
- 3. The recommended report writing format is in LaTex.(https://youtu.be/YLm3sXlKpHQ)

Term Work: (25 marks)

1. Term Work evaluation and marking scheme:

a. The review/ progress monitoring committee shall be constituted by Head of Departments of each institute.

b. The progress of minor project to be evaluated on continuous basis, minimum two reviews in each semester.

c. At end of semester the above 2 expert faculty who have approved the topic will internally evaluate the performance.

d. Students have to give presentation and demonstration on the Embedded Systems Minor Project at end of semester before submission to above experts.

e. In the evaluation each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed. Based upon it the marks will be awarded to student.

f. Distribution of 25 Marks scheme is as follows:

i. Marks awarded by guide/supervisor based on log book and output: 10

ii. Marks awarded by review committee: 10

iii. Quality of Project report: 05

2. Guidelines for Assessment of Minor Project Practical/Oral Examination:

a. Report should be prepared as per the guidelines issued by the University of Mumbai.

b. Minor Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.

Text Books:

- 1. Quantitative abilities by Arun Sharma
- 2. Quantitative Aptitude for Competitive Examinations by R S Agrawal
- 3. Verbal and Non-Verbal reasoning by R S Agrawal

4. Guide to Competitive Programming Learning and Improving Algorithms Through Contests Antti Laaksonen, Department of Computer Science, University of Helsinki, Finland

Reference Books:

1. Algorithms Illuminated by Tim Roughgarden

- 2. Algorithm Design, Jon Kleinberg and Éva Tardos
- 3. Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein

4. Competitive Programming 4: The Lower Bound of Programming Contests in the 2020s by Steven Halim and Felix Halim

5. Guide to Competitive Programming: Learning and Improving Algorithms Through Contests Antti Laaksonen.

Useful Links:

- 1. https://doi.org/10.1007/978-3-319-72547-5
- 2. Algorithms by Jeff Erickson (freely available online)
- 3. https://onlinecourses.nptel.ac.in/noc21_cs99/preview
- 4. https://unacademy.com/a/i-p-c-beginner-track

Term Work (25 Marks):

Marks will be awarded based on Assessment Rubrics:

- 1. Student's active participation in skill based learning.
- 2. Presenting/showcasing learned skills through Social /outreach/ extension activities/Events/ Competitions/Trainings/Internships etc.
- 3. Submission of Report/act/demonstrations/ specific participation/Idea creation/scope/creativity/Case study etc.
- 4. Achievement/Recognition.

Skill Based Learning Code	Skill Based Learning - VII	Credits (TH+P+TUT)			
EXXS57	Aptitude/Logic Building and Competitive Programming skills	0+1+0			
Skill Prerequisite	 Knowledge of elementary mathematics (HSC level) Knowledge of basic English grammar (SSC level) Knowledge of Basic programming languages 				

	To have the basic awareness about how to prepare for recruitment process				
	To introduce the students to computational skills required to appear for				
Skill Objectives	recruitment tests.				
	To introduce the students to coding skills required to appear for				
	recruitment tests/ project /coding competitions.				

	1.	Discuss the basic concepts of QUANTITATIVE ABILITY			
	2.	viscuss the basic concepts of LOGICAL REASONING Skills			
	3.	Acquire satisfactory competency in use of VERBAL			
Skill Outcomes		REASONING			
	4.	Solve campus placements aptitude papers covering Quantitative			
		Ability, Logical Reasoning and Verbal Ability			
	5.	Use most common algorithms for competitive programming			
	6.	Analyse data structures for competitive up solving.			

Module No & Name	Sub Topics	SO Mapped	Hrs/ Sub Topic	Total Hrs/ Module	
. Basics of Ouantitative	Problems on Number System Problems on HCF and LCM Problems on Average	1,4	02	06	
Abilities	Problems on Ratio and Proportion, Problems on Percentage		02		
. Arithmetic	Problems on Ages, Problems on Profit and Loss		02	06	
Quantitative Abilities	Problems on Simple and Compound Interest, Problems on Time and Distance	1,4	02		
. Logical Reasoning	Number Series, Alpha Numerical, Letter & Symbol Series Numerical and Alphabet Puzzles, Seating Arrangement	02	04		
. Programming	What is Competitive Programming? Programming Contests, Language Features	5	02	05	
rechniques	Recursive Algorithms, Bit Manipulation		03		
Sorting and Searching	Sorting Algorithms, Solving Problems by sorting, Binary Search		05	05	
. Course Conclusion Course recap, Outcomes, Discussion		-	-	02	
			Total:	28	

Text Books:

- 1. Quantitative abilities by Arun Sharma
- 2. Quantitative Aptitude for Competitive Examinations by R S Agrawal
- 3. Verbal and Non-Verbal reasoning by R S Agrawal
- 4. Guide to Competitive Programming Learning and Improving Algorithms Through Contests Antti Laaksonen, Department of Computer Science, University of Helsinki, Finland

Reference Books:

- 1. Algorithms Illuminated by Tim Roughgarden
- 2. Algorithm Design, Jon Kleinberg and Éva Tardos
- 3. Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
- 4. Competitive Programming 4: The Lower Bound of Programming Contests in the 2020s by
- Steven Halim and Felix Halim
- 5. Guide to Competitive Programming: Learning and Improving Algorithms Through Contests

Antti Laaksonen.

Useful Links:

- 1. https://doi.org/10.1007/978-3-319-72547-5
- 2. Algorithms by Jeff Erickson (freely available online)
- 3. https://onlinecourses.nptel.ac.in/noc21_cs99/preview
- 4. https://unacademy.com/a/i-p-c-beginner-track

Term Work (25 Marks):

Marks will be awarded based on Assessment Rubrics:

- 1. Student's active participation in skill based learning.
- 2. Presenting/showcasing learned skills through Social /outreach/ extension activities/Events/ Competitions/Trainings/Internships etc.
- 3. Submission of Report/act/demonstrations/ specific participation/ Idea creation/scope/creativity/Case study etc.
- 4. Achievement/Recognition.

Technology Based Learning Code	SAT Course	Credits		
EXXT58	Technology Based Learning - VIII	0 - 1 - 0		
Prerequisite:	Basic Engineering and Technology courses			
TBL Objectives:	 To acquire competency in emerging areas of technology. To create a mind set for life-long learning required to persist technological shifts and be abreast with the market trends. To facilitate learning at self-paced schedules. To boost time management ability and self-discipline. To provide opportunities of strengthening digital footprints by showcasing the additional proficiency acquired as well as improve connectivity and networking. To enhance employment and entrepreneurial opportunities requirin 			

	1	
TBL Outcomes:	1.	Explain concepts of the emerging technology learned through the pursued course.
	2.	Describe social, ethical, and legal issues surrounding the learned technology.
	3.	Demonstrate professionalism and skills of digital age learning and working.
	4.	Demonstrate knowledge in entrance exams for higher technical education, placement interviews, and other avenues.
	5.	Analyse real-world case studies in society/industry for applicability of sustainable technological solutions.
	6.	Apply the acquired knowledge in developing technology-based solutions to real-world problems or other projects at hand.

Guidelines for Technology Based Learning:

- 1. Learners should enrol for an online course based on their area of interest concerning emerging areas of technology in consultation with Faculty Supervisor nominated by the Head of Department.
- 2. The course duration should be of minimum 04 weeks.
- 3. Students should watch all the videos of the course to learn the course in-depth and entirety.
- 4. Students should solve weekly assignments that are to be submitted online within the prescribed deadline.
- 5. Students should register and appear for the course certification exam on scheduled date and time.
- 6. Students should submit the certificate of course completion to the Faculty Supervisor.
- 7. Faculty Supervisor shall monitor students' participation and progress at every stage from course enrolment to certification.

Useful Learning Links:

- 1. https://swayam.gov.in
- 2. https://www.nptel.ac.in
- 3. https://www.coursera.org

Term Work (25 Marks):

Term Work shall be conducted for Total 25 Marks based on the following rubrics:

Performance Level	Not Qualifying	Poor	Acceptable	Good	Excellent
Marks	00	08	12	16	20
Compliance Status	Not Enrolled for any Course or Not Completed Course	Completed Course, Not Attempted Certification but Completed all Assignments.	Obtained Passing Grade or 40% of Total Score in Certification Exam	Obtained First Class Grades or 60% of Total Score	Obtained Elite Grade or 75% of Total Score

Π	OR	
	Completed all	
	Assignments	
	with Score	
	Above 70%.	